
RUIN PROBABILITIES OF INSURANCE COMPANIES
AND THE ORDINARY INTROGRO-DIFFERENTIAL

EQUATION∗

Yifeng Zhu
Department of Economics, Emory University, Atlanta 30322, USA

Email: yzhu59@emory.edu

Abstract When investigating the ruin probabilities of an insurance company, we
find out the importance of understanding the second-order linear ordinary differential
equation with non-local integral term. In the paper, we clearly expose the solution
issue concerned with the equation. Firstly, we introduce the problem of the ruin
probabilities of an insurance company and show the reason the ruin probabilities
actually obey the second-order linear ordinary differential equation with non-local
integral term. Second, we canvass the existence and uniqueness of the solution to the
equation. By variable substitution and exchanging sequence of repeated integral, the
non-local integral term can be simplified, and the equation can be transformed into a
system of equations. In addition, the proof of existence and uniqueness of the solution
of equations are completed here. At last, we analyze the structure of the solution, and
provide the solution form of the equation.
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1 Introduction

During the recent global finan-
cial crisis in 2008, some insurance compa-
nies such as Yamato Life in Japan filed
for bankruptcy. Even prior to the crisis,
many insurance companies like Nissan Mu-
tual Life, Toho Mutual Life, Tokyo Mutu-
al Life and Kyoei Life Insurance Compa-
ny declared bankruptcy one after another
in Japan. The United States experienced
”Black Monday” in 1989 after the collapse
of a large number of insurance companies.
Consequently how to reduce the ruin prob-
abilities of insurance companies and protect
the rights of insurance holders are a hot top-
ic. Related research began with Gerber [1],
and current research focuses on considering
some factors within the risk model of the

insurance’s surplus or providing analytic so-
lutions in special cases. Papers [2, 3] for ex-
ample, take tax factor into account.

This paper introduces the classical risk
model of the surplus for the insurance
companies. Then it shows that if con-
sidering about investment, the ruin prob-
ability satisfies the second-order ordinary
integro-differential equation. If not, the
ruin probability satisfies the first-order or-
dinary integro-differential equation. The
paper mainly studies the ordinary integro-
differential equation thereafter.

2 Ruin Probabilities

In this section, we will introduce the re-

∗
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alistic problem for the insurance companies
and show how it is actually an ordinary
integro-differential equation problem. Let
u > 0 denote the initial capital, the premi-
um income linearly increases proportionally,
meaning the premium income during [0, t] is
ct. In addition, we use S(t) to denote the
amount of claim and Wt denotes the risky
income at time t which the insurance com-
pany attains from the investment. Then the
surplus of the insurance company at time t
is Rt, which could be expressed as follows.

Rt = u+ ct+ σWt − St, t ≥ 0. (2.1)

In (2.1), the claim {S(t)} is a random
variable dependent on time, called stochas-
tic process. The stochastic process {S(t)}
consists of {N(t)} (number of claims) and
{Zk, k = 1, 2, · · · , Nt} (the amount of each
claim). If N is a Poisson process, then S is
called a compound Poisson process. σ > 0
denotes the fluctuation ratio of underlying
assets, and {Wt} is a standard Brownian
motion in (2.1).

Then we discuss the problem based on
the following classical risk model.

Rt = u+ ct+ σWt −
Nt∑
k=1

Zk, t ≥ 0. (2.2)

{Nt} is a Poisson process with parameter
λ > 0; during period (0, t) it counts the
number of claims. {Zk}, k ≥ 1 is a non-
negative sequence of i.i.d. random vari-
ables. Zk denotes the amount of the kth
claim. {Nt}, {Zk}, {Wt} are independent
from each other. (2.2) is a continues time
homogeneous strong Markov process.

From (2.2), we observe that two prob-
abilities can lead to the bankruptcy of the
insurance company. One is due to claims,
the other to bad investment. As a result,
Dufresne and Gerber [4] decompose the ru-
in probability in risk process (2.2) into two
parts: the ruin probability due to the in-
vestment and the ruin probability due to the
claims. Assuming that the ruin probability

is second-order differentiable, they could ob-
tain two different types of ruin probabilities
expressed by series.

Let a > 0, define τa = inf{s : |Ws| = a}.
When x ∈ [−a, a], define two functions:

H(a, t, x) = (2πt)−1/2 ∑+∞
k=−∞

[
exp

{
− 1

2t
(x + 4ka)2

}
−

exp
{

− 1
2t

(x− 2a + 4ka)2
}]
,

(2.3)

h(a, t) = 1
2
√

2π
at−3/2 ∑+∞

k=−∞

[
(4k + 1)exp

{
−

a2

2t
(4k + 1)2

}
+ (4k − 3)exp

{
− a2

2t
(4k − 3)2

}
−

(4k − 1)exp
{

− a2

2t
(4k − 1)2

}]
.

(2.4)

From [5], we have P (Ws ∈ dx, τa > s) =
H(a, s, x)dx, P (τa ∈ ds) = h(a, s)ds.

Define that T 0
u = inf{t ≥ 0;Rt < 0}, if

t ≥ 0, Rt ≥ 0, then T 0
u = +∞. It is intu-

itive to observe that T 0
u is the bankruptcy

time. Let ruin probability ψ(u) of (2.2) be
defined as ψ(u) = P (inft≥0Rt < 0), then
ψ(u) = P (Tu < +∞). Let µ = E[Z1],
F (z) = P (Z1 ≤ z).

Since µs(t) = ES(t) = E

(
E
(
S(t)|N(t)

))
=

E
(
N(t)E(Z1)

)
= EN(t)E(Z1) = λtE(Z1),

when µ > 0 and we assume that E[Rt] =
u+(c−λµ)t > 0 (that is actually c−λµ > 0),
then ψ(u) < 1. While when c − λµ < 0,
limt→∞E[Rt] = −∞, then the bankrupt-
cy will happen definitely, or ψ(u) = 1; and
when c−λµ = 0, the bankruptcy must occur
as well.

Here we use ψd(u) to denote the ruin
probability due to the improper investmen-
t and ψs(u) to denote the ruin probability
due to claims.

ψ(u) = ψd(u) + ψs(u). (2.5)

Let {Tk}, k ≥ 1, the jump time series of
{Nt}, or the claim’s time series. If F (z) has
a continuous density function at [0,+∞),
then P

(
∪∞
k=1 {RTk = 0}

)
= 0, so

ψd(u) = P (T 0
u < +∞, RT 0

u
= 0),

ψs(u) = P (T 0
u < +∞, RT 0

u
< 0).

(2.6)
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Based on (2.6),

ψd(u) =

{
0, u < 0

1, u = 0

ψs(u) =

{
1, u < 0

0, u = 0

(2.7)

Theorem 2.1: u > 0, and if F (Z) has a
continuous density function at [0,+∞], then
the probability ψd(u) satisfies the following
integral equation.

ψd(u) =
1

2

∫ +∞

0

(
ψd(ct) + ψd(2u + ct)

)
exp{−λt}h(

u

σ
, t)dt+

∫ +∞

0
λexp{−λs}ds

∫ u/σ

−u/σ
H(

u

σ
, s, x)dx

∫ u+cs+σx
0 ψd(u + cs + σx− z)dF (z).

(2.8)

.

Proof: We use Ad to represent the
bankruptcy due to the investment. Ft =
σ{Rs, s ≤ t}, σ(Rs, s ≤ t} means al-
l the possible information for the surplus
Rs at time s. Let Mt = E

[
I(Ad)|Ft

]
, thus

{Mt, t ≥ 0} is a Ft− martingale. Then let
T = τu/σΛT1, Λ means to take the min-
imum of the two figures, we could have
P (T < +∞) ≤ P (T1 < +∞) = 1. By opti-
mal stopping theorem and properties of the
strong Markov process-Rt, we obtain

ψd(u) = EM0 = E[MT ] = E

[
E

[
I(Ad)|FT

]]
= E

[
ψd(RT )

]
.

(2.9)

Thus

ψd(u) = E
[
ψd(RT )

]
= E

[
ψd(u + cτu/σ + σWτu/σ

)I(τu/σ < T1)
]
+

E
[
ψd(u + cT1 + σWT1

− Z1)I(τu/σ ≥ T1)
]

= I1 + I2.

(2.10)

I1 = E
[
ψd(u + cτu/σ + σWτu/σ

)I(τu/σ < T1)
]

= 1
2
E
[
ψd(2u + cτu/σ) + ψd(cτu/σ)I(τu/σ < T1)

]
.

(2.11)

Then from [6]1, we get

P (Wτa = a, τa ∈ dt) = P (Wτa = −a, τa ∈ dt) =
1

2
h(a, t)dt.

From (2.11),

I1 =
1

2

∫ +∞

0
ψd(ct) + ψd(2u + ct)exp{−λt}h(

u

σ
, t)dt. (2.12)

I2 = E
[
ψd(u + cT1 + σWT1

− Z1)I(τu/σ ≥ T1)
]

=
∫+∞
0 λexp{−λs}ds

∫+∞
0 dF (z)∫ u/σ

−u/σ
ψd(u + cs + σx− z)H(u

σ
, s, x)dx

=
∫+∞
0 λexp{−λs}ds

∫ u/σ
−u/σ

H(u
σ
, s, x)dx∫ u+cs+σx

0 ψd(u + cs + σx− z)dF (z).¶
(2.13)

The two following theorems’ proofs are
similar to that of Theorem 2.2 and 2.3 in [7].

Theorem 2.2: If F (z) has a continuous
density function at [0,+∞], then ψd(u) is
second-order continuously differentiable at
(0,+∞).

Theorem 2.3: If F (z) has a continu-
ous density function at [0,+∞], then ψd(u)
can satisfy the integro-differential equation
below.
1

2
σ
2
ψ

′′
d (u) + cψ

′
d(u) = λψd(u) − λ

∫ u

0
ψd(u− z)dF (z), (2.14)

where u ∈ (0,∞).

Similar to Theorem 2.2-2.3, we have the
following two theorems.

Theorem 2.4: If F (z) has a continuous
density function at [0,+∞], then ψs(u) is
second-order continuously differentiable at
(0,+∞).

Theorem 2.5: If F (z) has a continu-
ous density function at [0,+∞], then ψs(u)
can satisfy the integro-differential equation
below.
1

2
σ
2
ψ

′′
s (u)+cψ

′
s(u) = λψs(u)−λ

∫ u

0
ψs(u−z)dF (z)−λ(1−F (u)),

(2.15)

where u ∈ (0,∞).

Proposition 2.1: If F (z) has a contin-
uous density function at [0,+∞], then ψd(u)
is also continuous at [0,+∞].

Proof: From Theorem 2.1, we know
that ψd(0

+) = ψd(0). And because of
P (T 0

0+ = T 0
0 = 0) = 1 [7]2, while Rt is

continuous at the right, thus the following

1proposition 2.8.3 of Port and Stone(1978)
2Proposition 4.1 of Wang and Wu(2000)
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equality could be provided by the Uniform
Convergence Theorem,

lim
u→0

ψd(u) = lim
u→0

E
[
I(T0

u < +∞, R
T0
u

= 0)
]

= E
[

lim
u→0

I(T0
u < +∞, R

T0
u

= 0)
]

= E
[
I(T0

0 < +∞, R0 = 0)
]
= 1 = ψd(0).¶

Similarly we propose Proposition 2.2,

Proposition 2.2: If F (z) has a contin-
uous density function at [0,+∞], then ψs(u)
is also continuous at [0,+∞].

Then we add both sides of (2.14) with
(2.15),

1
2
σ2(ψd(u) + ψs(u))

′′ + c(ψd(u) + ψs(u))
′

= λ(ψd(u) + ψs(u))

−λ
∫ u
0 (ψd(u− z) + ψs(u− z))dF (z) − λ(1 − F (u)),

(2.16)

then

1

2
σ
2
ψ

′′
(u)+cψ

′
(u) = λψ(u)−λ

∫ u

0
ψ(u−z)dF (z)−λ(1−F (u)).

(2.17)

If F (z) is differentiable, F ′(z) = f(z),

1

2
σ
2
ψ

′′
(u)+cψ

′
(u)−λψ(u)+λ

∫ u

0
ψ(u−z)f(z)dz = λ(F (u)−1).

(2.18)

Since σ is a positive constant,

ψ
′′
(u)+

2c

σ2
ψ

′
(u)−

2λ

σ2
ψ(u)+

2λ

σ2

∫ u

0
ψ(u−z)f(z)dz =

2λ

σ2
(F (u)−1).

(2.19)

(2.19) is the second-order linear ordinary
differential equation with non-local integral
term we will discuss in the remaining chap-
ters.

If the company do not consider about
investment, i.e. σWt = 0, Rt = u + ct −∑Nt

k=1 Zk, the classical risk model could be
simplified. Thus, the ruin probability ψ(u)
satisfies: [8]3

ψ
′
(u)−

λ

c
ψ(u)+

λ

c

∫ u

0
ψ(u−z)f(z)dz =

λ

c
(F (u)−1) u ∈ (0,∞).

(2.20)

The order is one lower. However, it is not
easy to get their analytic solutions for either
first-order or second-order equation. The
analytic solutions could only be obtained in
some specific cases.

Both equations (2.19,2.20) don’t consid-
er the interest rate, if we consider the inter-
est rate It = rt [7], then the ruin probability
ψ(u) satisfies (3.5) in the following chapter,

ψ
′
(u) −

r + λ

c
ψ(u) +

λ

c

∫ u

0
ψ(u− z)f(z)dz =

λ

c
(F (u) − 1).

(2.21)

We mentioned before that we could solve
the ruin probability ψ(u) analytically on-
ly in some special cases. The paper skips
this part, but interested readers could read
[7, 9, 10] for reference.

3 The Existence and U-
niqueness of the Solution

In this section, we discuss the existence
and uniqueness of the solution to the second-
order linear ordinary differential equation
with a non-local integral term that the ruin
probabilities satisfied. Initially, we propose
the general form of the equation:


y′′(x) + p(x)y′(x) + q(x)y(x) + λ(x)
∫ x
0 y(x− t)m(t)dt = f (x)

y(0) = y0, y
′(0) = y1,

(3.1)

where p(x), q(x), λ(x) are non-constant
coefficients. Then we consider the exis-
tence and uniqueness of the solution to
problem(3.1). Let y′(x) = z(x), we get


y′(x) = z(x)

z′(x) = −p(x)z(x) − q(x)y(x) − λ(x)
∫ x
0 y(x− t)m(t)dt + f (x) .

(3.2)

Integrating both sides of (3.2), we obtain

z(x) = −
∫ x

0

[
p(u)z(u) + q(u)y(u)− f(u)

]
du

−
∫ x

0
λ(u)

[ ∫ u

0
y(u− t)m(t)dt

]
du+ c.

c is determined by z(0), c = z(0) = y1, and
thus we have∫ u

0
y(u−t)m(t)dt =

∫ u

0
y(w)m(u−w)dw =

∫ u

0
y(t)m(u−t)dt,

(3.3)

∫ x

0
λ(u)

[ ∫ u

0
y(u−t)m(t)dt

]
du =

∫ x

0
λ(u)

[ ∫ u

0
y(t)m(u−t)dt

]
du.

(3.4)

3p165-166 of Gerber and Shiu(1997)

4



By exchanging the sequence of repeated in-
tegral, (3.4) becomes

∫ x

0
y(t)dt

∫ x

t
λ(u)m(u− t)du =

∫ x

0
y(u)du

∫ x

u
λ(t)m(t− u)dt.

Let
∫ x

u
λ(t)m(t − u)dt = M(x, u). We will

discuss at 0 ≤ x ≤ b, but the conclusion
could extend to a ≤ x ≤ b, a ≤ 0. Let

Y (x) =

(
y(x)
z(x)

)
, η =

(
η1
η2

)
, Y (0) =

(
y(0)
z(0)

)
= η.

Then the equations’ system (3.2) will be
transformed to

Y ′(x) =

(
0 1

−q(x) −p(x)

)
Y (x)

− λ(x)
∫ x
0

(
0 0

m(x− t) 0

)
Y (t)dt +

(
0

f(x)

)
.

(3.5)

By integrating both sides, we get

Y (x) = η +
∫ x
0

[(
0 1

−q(x) −p(x)

)
Y (x) +

(
0

f(u)

)]
du

−
∫ x
0

(
0 0

M(x, u) 0

)
Y (u)du.

Assuming

A(x, u) =

(
0 1

−q(u) −M(x, u) −p(u)

)
,F (u) =

(
0

f(u)

)
,

are continuous at 0 ≤ u ≤ x, 0 ≤ x ≤ b, we
have

Y (x) = η +

∫ x

0
[A(x, u)Y (u) + F (u)]du. (3.6)

Similar to the proof of [11]4, the exis-
tence and uniqueness of the solution to the
equations could be deduced.

If
(

0 1
−q(x) −p(x)

)
is a 2 × 2 matrix,(

0
f(x)

)
is a two dimension vector, λ(x) is

a function of x,
(

0 0
m(x− t) 0

)
is a 2× 2 ma-

trix. They are all continuous at 0 ≤ x ≤ b,
0 ≤ t ≤ x. Then for 0 at a ≤ x ≤ b and
one arbitrary constant vector η =

(
η1
η2

)
, the

system of equations

Y ′(x) =

(
0 1

−q(x) −p(x)

)
Y (x)

− λ(x)
∫ x
0

(
0 0

m(x− t) 0

)
Y (t)dt +

(
0

f(x)

) .

has one unique solution ϕ(x), which is de-
fined in the whole interval 0 ≤ x ≤ b and
satisfies the initial condition, ϕ(0) = η.

4 The Structure of the Solu-
tion Space

In the last section, we will discuss the
structure of the solution space to the above
equations from (3.5), and let

A(x) =

(
0 1

−q(x) −p(x)

)
,

B(x, t) =

(
0 0

m(x− t) 0

)
,

F (x) =

(
0

f(x)

)
.

Then

Y
′
(x) = A(x)Y − λ(x)

∫ x

0
B(x, t)Y (t)dt + F (x). (4.1)

The related homogeneous equation is

Y
′
(x) = A(x)Y − λ(x)

∫ x

0
B(x, t)Y (t)dt. (4.2)

The linear combination of solutions to (4.2)
still satisfy the equation.

Several theorems are provided without
proof:

Theorem 4.1: If vector functions
Y1(x),Y2(x) are linearly correlated in a ≤
x ≤ b, then their Wronskian W (x) = 0,
a ≤ x ≤ b.

Theorem 4.2: If the solutions to prob-
lem (4.2), Y1(x),Y2(x), are linearly inde-
pendent, then their Wronskian W (x) ̸= 0,
a ≤ x ≤ b.

Theorem 4.3: (4.2) must have two in-
dependent solutions Y1(x), Y2(x).

Theorem 4.4: If Y1(x), Y2(x) are t-
wo independent solutions to (4.2), then any
solution Y (x) to problem(4.2) could be ex-
pressed as Y (x) = c1Y1(x) + c2Y2(x), here
c1,c2 are determined constants.

Thus, we could infer that the maximum
number of solutions to the problem (4.2) is
2, and all solutions to the problem construct
a two dimensional linear space.

Theorem 4.3-4.4 could be expressed as

4Five propositions from P68-P72
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Theorem 4.5: There exists a funda-
mental solution matrix ϕ(x) for (4.2), if
ψ(x) is one arbitrary solution to (4.2), then
ψ(x) = ϕ(x)C. C is determined to be a
constant vector.

Two simple properties for (4.2):

Property 4.1: If ψ(x) is the solution
to (4.1), and ϕ(x) is the solution to it-
s related homogenous equations (4.2), then
ψ(x) + ϕ(x) is the solution to (4.1).

Property 4.2: If ψ̃(x) and ϕ̃(x) are t-
wo solutions to (4.1), then ψ̃(x) − ϕ̃(x) is
the solution to (4.2).

From Property 4.2 and Theorem 4.5, we
know if ϕ(x) is a fundamental solution ma-
trix to (4.2). If ϕ̄(x) is a specific solu-
tion to (4.1), then any solution ψ(x) to the
problem (4.1 could be expressed as ψ(x) =
ϕ(x)C + ϕ̄(x). C is a determined constant
vector here.

In the end, we briefly describe our contri-
butions to the literature. For the ruin prob-
abilities problem of insurance companies, we
provide detailed explanation of its related
ordinary differential equation with non-local
integral, i.e, how the solutions should be for
this specific equation.

References

[1] Gerber H. U. ”An extension of the re-
newal equation and its application in
the collective theory of risk.” Scandina-
vian Actuarial Journal, 1970:205-210.

[2] Albrecher H., Borst S., Boxma O.,
Resing, J. ”The tax identity in risk

theory-a simple proof and an exten-
sion.” Insurance: Mathematics and E-
conomics, 2009, 44:304-306.

[3] Wang W., Ming R., Hu Y. ”On the ex-
pected discounted penalty function for
risk process with tax.” Statist. Probab.
Lett., 2011, 81:489-501.

[4] Dufresne F., Gerber H. U. ”Risk the-
ory for the compound Poisson process
that is perturbed by diffusion.” In-
surance: Mathematics and Economics,
1991, 10:51-59.

[5] Revuz D., Ypr M. ”Continuous
Martingales and Brownian Motion.”
Berlin：Springer, 1991， 105-106.

[6] Port S, Stone C. ”Brownian Motion
and Classical Potential Theory.” New
York: Academic Press, 1978.

[7] Wang G., Wu R. ”Some distribution-
s for classical risk process that is per-
turbed by diffusion.” Insurance: Math-
ematics and Economics, 2000, 26:15-
24.

[8] Gerber H. U., Shiu E. ”From Ruin The-
ory to Option Pricing.” AFIR Colloqui-
um, Cairns, Australia, 1997.

[9] He J. M., Wu R. ”Some Distribu-
tions for the Classical Risk Process
Perturbed by Brownian Motion.” Acta
Mathematica Scientia, 2010, 30A:818-
827.

[10] Zhu Y, Bian B. Discussion and appli-
cation of ordinary differential equation
with non-local integral term. Pure and
Applied Mathematics, 2012, 28: 219-
227

[11] Wang G., Zhou Z., Zhu S. ”Ordinary
equations.” Beijing: Higher Education
Press , 1983.

6


