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Abstract In this paper, we mainly study shock waves in a one-dimensional radi-
ation hydrodynamic system. By using the Rankine-Hugoniot condition and entropy
condition, this problem can be formulated as an initial boundary problem with a free
boundary for radiation hydrodynamic system. First, we transform this free boundary
to the fixed one by using change of variables involving unknowns. Then we investigate
the existence and uniqueness of the solution to the initial boundary problem for this
nonlinear system. For this problem, we first construct an approximate solution by
using the compatibility conditions of the data. Then we use the Picard iteration and
the Newton iteration for this nonlinear system respectively to construct a sequence of
approximate solutions. By using a series of estimates and a compactness argument,
we get the convergence of the sequence of approximate solutions. The limit of this
sequence gives a shock wave of the original radiation hydrodynamic system.
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1 Introduction

At high temperature, radiation has significant influence on the motion of fluids. The
applications of the radiation hydrodynamic systems are very broad, including such diverse
astrophysical phenomena as waves and oscillations in stellar atmospheres and envelops,
nonlinear stellar pulsation, supernova explosions, stellar winds and many others. It has
also direct application in other areas, for instance to the physics of laser fusion and reentry
of vehicles. It’s meaningful for us to investigate the mechanism of radiation phenomena
and the influence of radiation to the character exchange of data of fluids as energy, momen-
tum, temperature and so on. Radiation hydrodynamics finds a wide range of application
in scientific research, civil economy and military construction. The research on physical
modeling and numerical simulation of radiation hydrodynamics developed in the world for
many years, and some important results have already got ([14, 15]). Then, the research on
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the mathematical theory of radiation hydrodynamics possess significant reference effect for
us to understand the nature of models and well designed numerical scheme. In radiation
hydrodynamics, when we neglect the affection of viscidity and heat exchange, the density,
velocity and energy of fluids can be described by system of the Euler equations (hyper-
bolic) coupled with a transport equation (Boltzmann equation). Therefore, the study of
mathematical theory of radiation hydrodynamics is of great importance both from the
mathematical theory and application point of view.

We use I(x, t, ν,Ω) to denote the spcicific intensity of radiation (at time t) at space
point x, with frequency ν > 0 in a direction Ω, then the system of partial differential
equations of one-dimensional isentropic radiation hydrodynamics (cf. [14, 15]), can be
represented as following:





1
c

∂I(ν,Ω)
∂t

+ Ω1
∂I(ν,Ω)

∂x
= S(ν)− σa(ν)I(ν, Ω)

+
∫ ∞

0
dν ′

∫

S2

(
ν

ν ′
σs(ν ′ → ν, Ω′ · Ω)I(ν ′,Ω′)− σs(ν → ν ′,Ω · Ω′)I(ν, Ω)

)
dΩ′

ρt + (ρu)x = 0

(ρu + 1
c2

Fr)t + (ρu2 + P + Pr)x = 0

(1.1)

where c and S(ν) represent light speed and the rate of energy emission due to sponta-
neous processes, Ω1 denotes the projection of Ω along the x-axis. We can make it equals
to 1 without losing generality. σa(ν) = σa(x, t, ν, ρ) denotes the absorption coefficient.
Similar to absorption, a photon can undergo scattering interactions with matter, and the
scattering interaction serves to change the photon’s characteristics ν ′ and Ω′ to a new
set of characteristics ν and Ω, this leads to the definition of the ”differential scattering
coefficient” σs(ν ′ → ν, Ω′ · Ω). ρ(t, x) is the density, u is the speed while P = P (ρ) is
the pressure. Fr and Pr represent the radiative flux and the radiative pressure tensor
respectively can be defined by





Fr =
∫ ∞

0
dν

∫

S2
Ω1I(ν, Ω)dΩ,

Pr =
1
c

∫ ∞

0
dν

∫

S2
Ω2

1I(ν, Ω)dΩ.
(1.2)

There are abundant results about discontinuous solutions theory for one-dimensional
quasilinear hyperbolic conservation laws (cf. [2, 10, 11, 12, 13, 17]). But there are few
mathematical results on the radiation hydrodynamics system (1.1)-(1.2) due to its com-
plexity. Recently, Jiang-Zhong in [19] obtained the local existence of C1 solutions for
the Cauchy problems of the general radiation hydrodynamical system, and showed the
finite-time blowup of C1 solutions under the assumption that the initial data is large.
Rohde and Yong [16] constructed the existence of entropy solutions and its nonrelativis-
tic limit towards one kind of simplified nonlinear balance equation coupled with radiation
transport equation. Given some simplified assumptions towards radiation hydrodynamics,
Kawashima [6, 7] used nonlinear hyperbolic equations coupled with elliptical equation to
describe the motion of one-dimensional radiation fluids with some other people. Ito [4]
showed us the existence of bounded variation solutions to it then, and later on, Kawashima
with some others built stability of some nonlinear waves in [8, 9]. In [1], Anile, Blokhin
and Trakhinin investigated a mathematical model for radiation hydrodynamics. Then,
they got the existence of of local smooth solutions to the Cauchy problem for the equa-
tions through symmetrization. But the research on the theory of discontinuous solutions
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to the radiation hydrodynamic systems which have vital application background is still
in lack, especially for the transmission and disturbance of singularity of waves. To obtain
the existence of a shock wave, we need to overcome the complex structure of the system,
especially from the radiation terms in the Euler equations (1.1), which requires some new
ideas and new ingredients in the proof.

The rest of this paper is organized as follows: In §2, first, By using the Rankine-
Hugoniot condition and Lax entropy condition, we know this problem can be formulated
as an initial boundary problem with a free boundary for radiation hydrodynamic system.
Then, we transform this free boundary to the fixed one by using change of variables
involving unknowns. Later on we investigate the existence and uniqueness of the solution
to the initial boundary problem for this nonlinear system. Therefore we first construct an
approximate solution in §3. Then we use the Picard iteration and the Newton iteration
for this nonlinear system respectively to construct a sequence of approximate solutions.
By using a series of estimates and a compactness argument, we get the convergence of the
sequence of approximate solutions with the local existence of shock waves of this radiation
hydrodynamic system.

2 Problem introduction & main results

2.1 Problem introduction

Using (1.2), we can rewrite (1.1) as

Ut + A(U) · Ux = B(U). (2.1)

Where m = ρu, and

U =




I
ρ
m


 , A(U) =




c 0 0
0 0 1
0 a2 − m2

ρ2
2m
ρ


 , B(U) =




f
0
g


 , (2.2)

with a =
√

P ′(ρ) is the velocity of sound.
Set

F (U) =

(
cI, m,

m2

ρ
+ P

)T

(2.3)

then, (1.1) can be also expressed as the balance equations’ form below,

Ut + F (U)x = B(U). (2.4)

We will consider about the shock wave solutions to the Riemann problem for equations
(2.4) with the following piecewise smooth initial condition,

U(0, x) =
{

U+,0(x), x > 0
U−,0(x), x < 0 . (2.5)
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On the assumption that the equations with odd degree corresponding to (2.4) with the
constant initial condition,

U0(0, x) =
{

U+,0(0), x > 0
U−,0(0), x < 0

when the solutions to it are shock waves, we will discuss the discontinuous solutions,
mainly on the local existence of shock waves of problem (2.4)-(2.5).

The eigenvalues of A(U) can be got by simple calculation:

λ1 = u− a, λ2 = u + a, λ3 = c.

For c represents the light speed, so we can assume that λ1 < λ2 < λ3. Let lk and rk be the
corresponding left and right eigenvectors of A(U) with respect to λk for each k ∈ {1, 2, 3},

l1 = (0,−(u + a), 1), l2 = (0, a− u, 1), l3 = (1, 0, 0)

r1 = (0,− 1
2a

,
a− u

2a
)
T

, r2 = (0,− 1
2a

,−u + a

2a
)
T

, r3 = (1, 0, 0)T

with normalization
li · rj = δij =

{
1, i = j
0, i 6= j

.

Suppose that (A1) and (A2) are satisfied here:
(A1) The Riemann problem





∂tU0 + ∂xF (U0) = 0

U0(0, x) =
{

U+,0(0+), x > 0
U−,0(0−), x < 0

(2.6)

has the shock wave solution:

U0(t, x) =
{

U+
0 , x > σt

U−
0 , x < σt

. (2.7)

U±
0 satisfies the Rankine-Hugoniot condition on {x = σt}

(U+
0 − U−

0 )σ = F (U+
0 )− F (U−

0 ).

If (σ,U+
0 (0, 0), U−

0 (0, 0)) is the 1-shock wave, then it also satisfies the Lax entropy condi-
tion: 




σ < λ1(U−
0 ) < λ2(U−

0 ) < λ3

λ1(U+
0 ) < σ < λ2(U+

0 ) < λ3

(A2) The shock wave mentioned before satisfies the stability condition:

[U0(0)] = U+,0(0)− U−,0(0), r2(U+,0(0)), r3(U+,0(0))

are linear independence.

Remark 2.1: Just as Lax pointed out in [10], the stability condition is satisfied when
shock wave is weak.
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Cauchy problem (2.4)-(2.5) can be written as the following matrix form




Ut + A(U) · Ux = B(U)

U(0, x) =
{

U+,0(x), x > 0
U−,0(x), x < 0 .

(2.8)

Because we will discuss about the local solutions to the problem (2.8), we could suppose
that when |x| ≥ R, U±,0(x) is constant for the limited transmitting speed of hyperbolic
equation. Given a small neighborhood ω ⊂ {t = 0} of the origin, suppose ℵ is a determi-
nacy domain of ω for the Cauchy problem (2.8).

We will construct piecewise C1 weak solution to (2.9)
∥∥∥∥∥∥∥

U(t, x) =
{

U+(t, x), x > x(t)
U−(t, x), x < x(t)

x(0) = 0
(2.9)

the weak solution U satisfies equations (2.8) in ℵ± = {±(x− x(t)) > 0} and the Rankine-
Hugoniot condition (U+ − U−)x′(t) = F (U+) − F (U−) on {x = x(t)}, also it satisfies
1-shock wave entropy condition:





x′(t) < λ1(U−(t, x(t))) < λ2(U−(t, x(t))) < λ3

λ1(U+(t, x(t))) < x′(t) < λ2(U+(t, x(t))) < λ3

2.2 Problem transform

As (U+, U−, x(t)) of problem (2.8) is unknown, so we want to discuss the existence of
solution to the initial boundary problem with a free boundary for radiation hydrodynamic
system.

For x′(t) < λ−1 < λ−2 < λ3, then ℵ− = {x < x(t)} is the determinacy domain of
{x < 0} for problem (2.8). We can get the value of U− in ℵ first, therefore, we extend
U−,0(x) to {x ≥ 0} as C1 continuous, and we denote it by Ũ−,0(x).

To solve Cauchy problem




Ũt + A(Ũ) · Ũx = B(Ũ)

Ũ(0, x) = Ũ−,0(x)
(2.10)

we get the local solution Ũ−(t, x) ∈ C1(0 ≤ t < T, x ∈ IR). Let U−|ℵ− = Ũ−|ℵ− , the value
of U− is independent of the extension in ℵ− for ℵ− is the determinacy domain of {x < 0}.

Thus, we can assume that U− is known to problem (2.8)-(2.9), then we discuss the
following problem





∂tU+ + A(U+) · ∂xU+ = B(U+) in ℵ+ = {x > x(t)}
(U+ − U−) · x′(t)− (F (U+)− F (U−)) = 0 on {x = x(t)}
U+|t=0 = U+,0(x) x > 0

(2.11)

it’s a free boundary value problem for U+ and x(t) are unknown in (2.11).
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In order to transform this problem into the fixed boundary case, we perform the
transformation 




x̃ = x− x(t)

t̃ = t.

Letting ℵ̃+ = {x > 0}. We still use symbols (t, x) and ℵ+ to represent (t̃, x̃) and ℵ̃+, then
obtain the initial boundary problem in fixed area,





∂tU+ + (A(U+)− x′(t)I) · ∂xU+ = B(U+) (t, x) ∈ (t > 0, x > 0)

(U+ − U−) · x′(t)− (F (U+)− F (U−)) = 0 on {x = 0}
x(0) = 0

U+|t=0 = U+,0(x), x > 0

(2.12)

2.3 Compatibility conditions

In order to discuss (2.12), let’s study compatibility conditions.
(1) the zero-th order compatibility condition:
Since the boundary condition in (2.12) must be valid at {x = t = 0}, the zero-th order

compatibility condition for the problem (2.12) is

x′(t)|t=0[U0(0)] = [F (U0)] (2.13)

where [U0(0)] = U+,0(0)− U−,0(0).
It’s the supposition mentioned before σ(U+,0(0)−U−,0(0)) = F (U+,0(0))−F (U−,0(0)),

it can be got from Rankine-Hugoniot condition from (A1).
(2) the first order compatibility condition:
Differentiating the boundary condition in (2.12) with respect to t, and evaluating the

result at {x = t = 0}, we obtain

x′′(0)[U0(0)] + σ[∂tU |t=0]− [A(U)∂tU |t=0] = 0. (2.14)

On the other hand, from the equation and initial data in (2.12) we have

∂tU+(0, 0) = (σI −A(U+,0(0)))dxU+,0(0) + B(U+,0(0)). (2.15)

Substituting (2.15) into (2.14), it follows the first order compatibility condition for the
problem (2.12):

x′′(0)[U0(0)] + (σI −A(U+,0(0)))2dxU+,0(0) = −(σI −A(U+,0(0))) ·B(U+,0(0))

+(σI −A(U−,0(0))) · ∂tU−(0, 0).
(2.16)

In order to see the first order compatibility condition more clearly, let us diagonalize
(2.16). Set

T+ = (r1(U+,0(0)), r2(U+,0(0)), r3(U+,0(0))), U+,0(x) = T+V+,0(x).

Then (2.16) can be expressed as:

M ·




x′′(0)
∂xV 2

+,0(0)
∂xV 3

+,0(0)


 = k − (σ − λ1(U+,0(0)))2 · r1(U+,0(0)) · ∂xV 1

+,0(0) (2.17)
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where

M = ([U0(0)], (σ − λ2(U+,0(0)))2 · r2(U+,0(0)), (σ − λ3(U+,0(0)))2 · r3(U+,0(0))),

k = −(σI −A(U+,0(0))) ·B(U+,0(0)) + (σI −A(U−,0(0))) · ∂tU−(0, 0),

From the stability condition (A2),we know that the matrix M is invertible. Then, we
have




x′′(0)
∂xV 2

+,0(0)
∂xV 3

+,0(0)


 = M−1 · (k − (σ − λ1(U+,0(0)))2 · r1(U+,0(0)) · ∂xV 1

+,0(0)) (2.18)

Thus, the second equation and the third equation of (2.18) are what we need here, one-
order compatibility conditions, with x′′(0) determined from the first one.

Now, we can state the main theorem we want to prove in this paper.

Theorem 2.1: Suppose that the initial data U±,0(x) ∈ C1(ω±) satisfies the compat-
ibility conditions (2.13) and (2.18), there exists T > 0 such that the problem (2.12) has
unique solutions (U+, x(t)), U+ ∈ C1(ℵ+

T ), x(t) ∈ C2[0, T ], where ℵ+
T = ℵ+ ⋂{t < T}.

Remark 2.2: As the transformation

{
x̃ = x− x(t)
t̃ = t

in §2.2 is invertible, we can get

the local existence of 1-shock wave solutions to the original problem (2.8).

3 The existence of shock wave

This section is devoted to the proof of Theorem 2.1. For nonlinear problem (2.12), we
first construct an approximate solution. Then we use iterations to construct a sequence of
approximate solutions. By using a series of priori estimates and a compactness argument,
we get the convergence of the sequence of approximate solutions. The limit of this sequence
gives the solutions to problem (2.12). That also proves Theorem 2.1, or rather, the local
existence of a shock wave solution of the original radiation hydrodynamic system (1.1).

3.1 Construction of the zero-th order approximate solution

Introduce the notations

L(U+, x(t)) = ∂t + (A(U+)− x′(t)I)∂x (3.1)

and
G(U+, x′(t)) = x′(t)[U ]− [F (U)]. (3.2)

Obviously, problem (2.12) can be written as




L(U+, x(t))U+ = B(U+), (t, x > 0)

G(U+, x′(t)) = 0, x = 0

x(0) = 0

U+(0, x) = U+,0(x).

(3.3)
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Under the compatibility conditions (2.13) and (2.18), we try to construct approximate
solutions (U0

+, x0(t)) of problem (3.3), such that U0
+ ∈ C1(ℵ+), x0(t) ∈ C2[0, T ], and when

t = 0, they satisfy 



L(U0
+, x0(t))U0

+ = B(U0
+)

dk
t G(U0

+, dtx
0(t)) = 0, (k = 0, 1)

x0(0) = 0

U0
+(0, x) = U+,0(x).

(3.4)

Set mk(x) = ∂k
t U0

+(0, x) for k ∈ {0, 1}. The initial condition in (3.3) implies that m0(x) =
U+,0(x) ∈ C1(ω+), while from the equation in (3.3), we deduce m1(x) ∈ C0(ω+).

Let us construct the approximate solutions U0
+ of (3.3) by the following lemma. The

proof of Lemma 3.1 is omitted since it is the similar as that in [18] (Lemma 3.1) by Wang,
Ya-Guang.

Lemma 3.1: Given functions m0 ∈ C1(ω), and set

m1(x) = −(A(m0(x))− σI)dxm0(x) + B(m0(x)) (3.5)

it can be obtained in (3.3), then there are functions U0
+ ∈ C1(ℵ+) such that

U0
+(0, x) = m0(x), ∂tU

0
+(0, x) = m1(x) (3.6)

and when t = 0,
∂tU

0
+ + (A(U0

+)− σI)∂xU0
+ = B(U0

+). (3.7)

Set b = x′′(0), which can be got from (2.18), then define the approximate solution
x0(t)) ∈ C2[0, T ] of (3.3) by the following lemma.

Lemma 3.2: Let U0
+ ∈ C1(ℵ+) be the approximate solution of (3.3) given as above.

Then there is a x0(t) ∈ C2[0, T ] such that




dk
t G(U0

+, dtx
0(t))|t=0 = 0, (k = 0, 1)

x0(0) = 0, dtx
0(0) = σ, d0

t x
0(0) = b

(3.8)

The proof of Lemma 3.2 is similar as that in [18] (Lemma 3.2).
Summing up, we have the following

Proposition 3.1: Under the compatibility conditions (2.13) and (2.18), there are
approximate solutions (U0

+, x0(t)) to the problem (3.3), such that U0
+ ∈ C1(ℵ+), x0(t) ∈

C2[0, T ], and when t = 0, they satisfy (3.4),




L(U0
+, x0(t))U0

+ = B(U0
+)

dk
t G(U0

+, dtx
0(t)) = 0, (k = 0, 1)

x0(0) = 0

U0
+(0, x) = U+,0(x).
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3.2 Construction of a sequence of approximate solutions

From the definition (3.2) of G(U+, x′(t)), it is easy to see that the Fréchet derivative of G
with respect to its arguments at (V+, ϕ′(t)) is

G′
(U+,x′(t))(V+, ϕ′(t)) = (x′(t)I −A(U+))V+ + [U ]ϕ′(t). (3.9)

Given approximate solutions (U0
+, x0(t)) by Proposition 3.1, we solve the problem (2.12)

by the iteration scheme




L(Uγ
+, xγ(t))Uγ+1

+ = B(Uγ
+)

G′
(Uγ

+,dtxγ(t))
(Uγ+1

+ , dtx
γ+1(t)) = −G(Uγ

+, dtx
γ(t)) + G′

(Uγ
+,dtxγ(t))

(Uγ
+, dtx

γ(t))

xγ+1(0) = 0

Uγ+1
+ (0, x) = U+,0(x)

(3.10)

that is, we use the usual Picard iteration for the equation, and the Newton iteration for
the boundary condition. The zero-th and first order compatibility conditions (2.13) and
(2.18) in (3.10) are satisfied.

To study the problem (3.10), let us first consider the linear problem (3.11) first. Then,
we have following Proposition 3.2 towards it, thus, the local existence of the solutions to
problem (3.10) and priori estimates are given, preparing well for the proof of the conver-
gence of the sequence of approximate solutions in §3.4, and the proof of Proposition 3.2
will be given in §3.3. 




L(U+, x(t))V+ = B(U+) + f

G′
(U+,x′(t))(V+, ϕ′(t)) = g(t)

ϕ(0) = 0

V+(0, x) = U+,0(x)

(3.11)

where U+ ∈ C1(ℵ+
T ), x(t) ∈ C2(0, T ), while f ∈ C1(ℵ+

T ) and g ∈ C1[0, T ] satisfy the
compatibility conditions of (3.11) up to order one.

To alleviate the burden of notations, in the remainder of this paper, setting ω+
s =

ℵ+ ⋂{t = s}, we use ‖u(t)‖ and ‖u(t)‖1 = ‖u(t)‖ + ‖∇u(t)‖ to denote the L∞(ω+
t ) and

W 1,∞(ω+
t ) norms, respectively, of u(t, ·). Analogously, we use ‖u‖t and ‖u‖1,t to denote

the L∞(ℵ+
t ) and W 1,∞(ℵ+

t ) norms, respectively, of u(·). For any φ ∈ L∞[0, T ], the norm
‖φ‖L∞[0,t] is also denoted by ‖φ‖t, for any t ∈ (0, T ].

For the problem (3.11), we have the following results, the proof of which will be given
in the next subsection.

Proposition 3.2:
(1) Suppose that f ∈ C0(ℵT ), g ∈ C0[0, T ] satisfy the zero-th order compatibility con-

dition of the problem (3.11). Then there exist unique weak solutions V+ ∈ C0(ℵ+
T ), ϕ ∈

C1[0, T ]. to the problem (3.11). Moreover, there is a constant C > 0 such that

|dtϕ(t)|+ ‖V+(t)‖ ≤ CeCMt(‖g‖t + ‖U+,0‖+
∫ t

0
‖f(s) + B(U+(s))‖ds) (3.12)

for any t ∈ (0, T ], where M is a constant.
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(2) If (f, g) ∈ C1 and satisfy the first order compatibility condition of the problem
(3.11), then the unique solutions V+ ∈ C1(ℵ+

T ), ϕ ∈ C2[0, T ]. Moreover, we have the
estimate

|d2
t ϕ(t)|+ ‖∇(t,x)V+(t)‖

≤ C exp(CMteCMt)(‖dtg‖t + ‖f(0)‖+ ‖B(U+(0))‖+ ‖dxU+,0‖+ M(‖g‖t + ‖U+,0‖)
+

∫ t
0(‖∂tf(s)‖+ M‖f(s)‖+ ‖B(U+(s))‖)ds)

(3.13)

3.3 Proof of Proposition 3.2

In this subsection, we will give the proof of proposition 3.2. At first, let us diagnoalize the
problem (3.11). Set

T+ = (r1(U+), r2(U+), r3(U+))

and
(T+)−1 = (l1(U+), l2(U+), l3(U+))T ,

with {ri, li}3
i=1 given before. Set

V+ = T+Ṽ+ (3.14)

and
L̃(U+, x(t)) = ∂t + (Λ(U+)− x′(t)I)∂x (3.15)

with
Λ(U) = diag[λ1(U), λ2(U), λ3(U)] (3.16)

being a diagonal matrix with eigenvalues as its entries. By making use of the fact

(∂T+)(T+)−1 = −T+∂(T+)−1,

it is easy to see that the problem (3.11) is equivalent to




L̃(U+, x(t))Ṽ+ = (T+)−1(B(U+) + f) + (L̃(U+, x(t))(T+)−1)T+Ṽ+

G̃′
(U+,x′(t))(Ṽ+, ϕ′(t)) = g(t)

ϕ(0) = 0

Ṽ+(0, x) = Ṽ+,0(x) = (T+)−1U+,0(x)

(3.17)

with

G̃′
(U+,x′(t))(Ṽ+, ϕ′(t)) =

3∑

i=1

(x′(t)− λi(U+))ri(U+)Ṽ+ + (U+ − U−)ϕ′(t). (3.18)

To study the problem (3.17), let us first consider the diagonal problem




L̃(U+, x(t))V+ = B(U+) + f

G̃′
(U+,x′(t))(V+, ϕ′(t)) = g(t)

ϕ(0) = 0

V+(0, x) = V+,0(x)

(3.19)
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where f ∈ C1(ℵ+
T ), and g ∈ C1[0, T ] satisfy the compatibility conditions of (3.19) up to

order one. We decompose V+ into two parts,

V+,I = V+,1 and V+,II = (V+,2, V+,3)T . (3.20)

The same decompositions of (f,B, V+,0) as above are also denoted by fI , fII ;BI , BII

and V I
+,0, V

II
+,0. From the Lax entropy condition, we know that

λi(U+)− x′(t)
{

< 0, i = 1
> 0, i = 2, 3 (3.21)

which implies that (3.19) is an initial value problem for the component V+,I , and a mixed
problem for the component V+,II .

Therefore, we immediately obtain the following lemma for V+,I .

lemma 3.3:
(1) For any bounded U+ ∈ C1(ℵ+

T ) and x(t) ∈ C2[0, T ], fI ∈ C0(ℵ+
T ) and V+,0 ∈

C0(ω+), there are unique weak solution V+,I ∈ C0(ℵ+
T ) to the I-part of the problem (3.19).

Moreover, for any t ∈ (0, T ],

‖V+,I(t)‖ ≤ ‖V I
+,0‖+

∫ t

0
‖fI(s) + BI(U+(s))‖ds. (3.22)

(2) There are constants C, M > 0,

ω(δ, t;V+,I) ≤ CeCMtω(δ;V I
+,0) + δ‖fI + BI(U+)‖t +

∫ t

0
CeCM(t−s)ω(δ, s; fI + BI(U+))ds

(3.23)
where

ω(δ, t;U) = sup|U(s, x)− U(s′, x′)| (3.24)

denotes the modulus of continuity of U with supremum taken over (s, x) and (s′, x′) in ℵ+
t

such that |(s, x)− (s′, x′)| ≤ δ.

Proof: The proof is simple, the main idea is to get the value of V+,I by integrating
through the characteristic curve. We will mainly discuss about V+,II then. Through the
proof of estimation of V+,II , we could get the results given in Lemma 3.3 analogously.¶

For the II-part of the problem (3.19)




∂tV+,II + ΘII(U+, x(t))∂xV+,II = fII + BII

M · (ϕ′(t), V+,2, V+,3)T = g(t) + (λ1(U+)− x′(t))r1(U+)V+,1

ϕ(0) = 0

V+,II(0, x) = V II
+,0(x)

(3.25)

where V+,1 ∈ C0(ℵ+) is given by Lemma 3.3,

ΘII(U+, x(t)) = (ΛII(U+)− x′(t)I) = diag[λ2(U+)− x′(t), λ2(U+)− x′(t)]

is diagonal matrix with positive entries, and the matrix

M = ((U+ − U−), (x′(t)− λ2(U+))r2(U+), (x′(t)− λ3(U+))r3(U+))
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is invertible from the stability condition (A2).
Without loss of generality, let us investigate the component V+,2 in the problem (??).

Obviously, we know that V+,2 satisfies





∂tV+,2 + (λ2(U+)− x′(t))∂xV+,2 = f2 + B2

V+,2(t, 0) = a2(t)

V+,2(0, x) = V 2
+,0(x)

(3.26)

where a2(t) is the second component of the vector (M)−1·(g(t)+(λ1(U+)−x′(t))r1(U+)V+,1),
and the compatibility conditions of (3.26) up to order one are valid.

For the problem (3.26), by integrating along characteristic curves, we obtain the fol-
lowing

lemma 3.4:
(1) For any V 2

+,0 ∈ C0(ω+), and f2 ∈ C0(ℵ+
T ), there is a unique weak solution V+,2 ∈

C0(ℵ+
T ) to the problem (3.26). Moreover, for any t ∈ (0, T ],

‖V+,2(t)‖ ≤ ‖a2‖t + ‖V 2
+,0‖+

∫ t

0
‖f2(s) + B2(U+(s))‖ds. (3.27)

(2)

ω(δ, t;V+,2) ≤ CeCMt(ω(δ, t; a2)+ω(δ, V 2
+,0)+ δ‖f2 +B2‖t +

∫ t

0
ω(δ, s; f2 +B2)ds) (3.28)

Proof: Let s → (s,Υ(s; t, x)) be the characteristic curve of (3.26) through (t, x) with
Υ(s; t, x) being the solution of the problem





dsΥ(s; t, x) = λ2(U+(s,Υ(s; t, x)))− x′(s)

Υ(t; t, x) = x.
(3.29)

Let s1(t, x) be the root of
Υ(s1(t, x); t, x) = 0 (3.30)

and
ℵ̃+

T = {(s, t, x)|max(0, s1(t, x)) ≤ s ≤ x for (t, x) ∈ ℵ+
T }.

From the theory of ordinary differential equations, we have Υ(s; t, x) ∈ C1(ℵ̃+
T ). For

(t, x) ∈ ℵ+
T , we have two cases:

Case (1): s1(t, x) < 0. In this case, (3.26) is a Cauchy problem for V+,2, and for its
solution we have the explicit formula

V+,2(t, x) = V 2
+,0(Υ(0; t, x)) +

∫ t

0
f2(s,Υ(s; t, x))ds + B2(U+(s,Υ(s; t, x)))ds. (3.31)

Case (2): s1(t, x) ≥ 0. The solution of problem (3.26) can be expressed as

V+,2(t, x) = a2(s1(t, x)) +
∫ t

s1(t,x)
f2(s,Υ(s; t, x))ds + B2(U+(s,Υ(s; t, x)))ds. (3.32)
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From (3.31) and (3.32), we immediately deduce the estimate (3.27).
Next, we consider the estimate (3.28). For any δ > 0, t ∈ (0, T ] and (ti, xi) ∈ ℵ+

t (i =
1, 2) with |(t1, x1)− (t2, x2)| < δ, we divide the estimate of V+,2(t1, x1)− V+,2(t2, x2) into
three cases:

Case (α): s1(ti, xi) < 0 (i = 1, 2). As above, (3.26) is a Cauchy problem for
V+,2(ti, xi). We have

|V+,2(t1, x1)− V+,2(t2, x2)|
≤ CeCMtω(δ, V 2

+,0) + δ‖f2 + B2‖t +
∫ t
0 CeCM(t−s)ω(δ, s; f2 + B2(U+))ds.

(3.33)

Case (β): s1(ti, xi) ≥ 0 (i = 1, 2). From (3.32), we have

V+,2(t1, x1)− V+,2(t2, x2)

= a2(s1(t1, x1))− a2(s1(t2, x2))

+
∫ t1
s1(t1,x1)(f2(s,Υ(s; t1, x1))ds + B2(U+(s,Υ(s; t1, x1)))ds)

− ∫ t2
s1(t2,x2)(f2(s,Υ(s; t2, x2))ds + B2(U+(s,Υ(s; t2, x2)))ds).

(3.34)

The definition (3.30) of s1(t, x) implies

0 = dsΥ(s1(t, x); t, x) · ∂s1(t, x) + ∂Υ(s1(t, x); t, x)

Thus,
∂s1(t, x) = −(dsΥ(s1(t, x); t, x))−1 · (∂Υ)(s1(t, x); t, x)

= (x′(t)− λ2(U+))−1 · (∂Υ)(s1(t, x); t, x)
(3.35)

for ∂ = ∂t or ∂ = ∂x. And we have the estimate of Υ,

|∂(t,x)Υ(s; t, x)| ≤ CeCM(t−s). (3.36)

The proof of (3.36) is given as follows, as




∂sΥ(s; t, x) = λ(U(s,Υ(s; t, x)))

Υ(t; t, x) = x,

so, we obtain

Υ(s; t, x) = x +
∫ t

s
λ(U(τ, Υ(τ ; t, x)))dτ.

1. ∂xΥ(s; t, x) = 1 +
∫ t
s ∇uλ · Ux · ∂xΥ(τ ; t, x)dτ

|∂xΥ(s; t, x)| ≤ 1 + C1M

∫ t

s
|∂xΥ(τ ; t, x)|dτ

then, by applying Gronwall’s inequality, we have

|∂xΥ(s; t, x)| ≤ eC1M
∫ t

s
dτ = eC1M(t−s).

2. ∂tΥ(s; t, x) = 1 +
∫ t
s ∇uλ · Ut · ∂tΥ(τ ; t, x)dτ + λ(U(τ, Υ(τ ; t, x)))

|∂tΥ(s; t, x)| ≤ C2 + C1M

∫ t

s
|∂tΥ(τ ; t, x)|dτ
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similarly, by using Gronwall’s inequality, we get

|∂tΥ(s; t, x)| ≤ C2e
C1M

∫ t

s
dτ = C2e

C1M(t−s).

Taking C = max{C1, C2}, we obtain the estimate (3.36),

|∂(t,x)Υ(s; t, x)| ≤ CeCM(t−s).

Applying (3.36) in (3.35), it follows

|∂(t,x)s1(t, x)| ≤ CeCMt when s1(t, x) ≥ 0 (3.37)

with another constant C > 0. Employing (3.37) for (3.39), it is easy to obtain

|V+,2(t1, x1)− V+,2(t2, x2)|
≤ CeCMt(ω(δ, t; a2) + δ‖f2 + B2‖t +

∫ t
0 ω(δ, s; f2 + B2)ds).

(3.38)

Case (γ): s1(t1, x1) ≥ 0 and s1(t2, x2) < 0. It is same for s1(t1, x1) < 0 and s1(t2, x2) ≥
0. From (3.31) and (3.32), we obtain

V+,2(t1, x1)− V+,2(t2, x2)

= a2(s1(t1, x1))− V 2
+,0(t2, x2)

+
∫ t1
s1(t1,x1)(f2(s,Υ(s; t1, x1))ds + B2(U+(s,Υ(s; t1, x1)))ds)

− ∫ t2
0 (f2(s,Υ(s; t2, x2))ds + B2(U+(s,Υ(s; t2, x2)))ds).

(3.39)

Obviously, when (ti, xi) ∈ ℵ+
t , and |(t1, x1) − (t2, x2)| < δ, using (3.36) and (3.37), we

have
0 ≤ s1(t1, x1) ≤ s1(t1, x1)− s1(t2, x2) ≤ CeCMtδ (3.40)

and
0 ≤ Υ(0; t2, x2) ≤ Υ(0; t2, x2)−Υ(0; t1, x1) ≤ CeCMtδ. (3.41)

Applying (3.40) and (3.41) in (3.39), it follows

|V+,2(t1, x1)− V+,2(t2, x2|
≤ CeCMt(ω(δ, t; a2) + ω(δ, V 2

+,0) + δ‖f2 + B2‖t +
∫ t
0 ω(δ, s; f2 + B2)ds).

(3.42)

Summing the above three cases up, it concludes the result (3.28).¶
From Lemmas 3.3 with 3.4 together it follows

lemma 3.5:
(1) For any f ∈ C0(ℵ+

T ) and V+,0 ∈ C0(ω+) satisfying the zero-th order compatibility
condition of (3.19). there are unique weak solutions V+ ∈ C0(ℵ+

T ) and ϕ ∈ C1[0, T ] to the
problem (3.19). Moreover, there is a constant C > 0 such that, for any t ∈ (0, T ],

|dtϕ(t)|+ ‖V+(t)‖ ≤ C(‖g‖t + ‖V+,0‖+
∫ t

0
‖f(s) + B(U+(s))‖ds). (3.43)
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(2) If there is a constant M > 0, then

ω(δ, t; dtϕ(t)) + ω(δ, t;V+)

≤ CeCMt(ω(δ, t; g) + ω(δ, V+,0) + δ‖f + B‖t +
∫ t
0 ω(δ, s; f + B)ds)

(3.44)

We can continue our research on Lemma 3.5, and give Lemma 3.6 without proving.
(refers to [3])

lemma 3.6: With the same conditions as above, if g ∈ C1[0, T ] and f ∈ C0(ℵ+
T ) have

the form
fi = ρi(∂tσi + (λi(U+)− x′(t))∂xσi) (3.45)

with (ρi, σi) ∈ C1 for any i ∈ {1, 2, 3}, then the solutions of the problem (3.19) V+ ∈
C1(ℵ+

T ), ϕ ∈ C2[0, T ].
Now we can give the proof of Proposition 3.2 as we have the result Lemma 3.6.

The proof of Proposition 3.2: Assertion (1): Let us turn to the study of the problem
(3.17) before consider about (3.11). The diagonal problem (3.17) can be solved by the
iteration scheme





L̃(U+, x(t))Ṽ γ+1
+ = (T+)−1(B(U+) + f) + (L̃(U+, x(t))(T+)−1)T+Ṽ γ

+

G̃′
(U+,x′(t))(Ṽ

γ+1
+ , ϕ′(t)γ+1) = g(t)

ϕ(0)γ+1 = 0

Ṽ γ+1
+ (0, x) = Ṽ+,0(x)

(3.46)

with the first approximate solution Ṽ 0
+ ∈ C1(ℵ+

T ), ϕ0 ∈ C2[0, T ] constructed in a way
similar to Proposition 3.1. Under the assumption of Proposition 3.2(1), by employing the
estimate (3.43) for the problem (3.46), there is a constant C > 0 such that, for any γ ≥ 0
and t ∈ (0, T ],

|dtϕ
γ+1(t)|+ ‖Ṽ γ+1

+ (t)‖
≤ C(‖g‖t + ‖Ṽ+,0‖+

∫ t
0(‖f(s) + B(U+(s))‖+ M‖Ṽ γ

+(s)‖)ds).
(3.47)

By induction on γ for (3.47), it follows that Ṽ γ
+ ∈ C0(ℵ+

T ), ϕγ ∈ C1[0, T ]. By using
Gronwall’s inequality, we have

|dtϕ
γ(t)|+ ‖Ṽ γ

+(t)‖ ≤ CeCMt(‖g‖t + ‖Ṽ+,0‖+
∫ t

0
‖f(s) + B(U+(s))‖ds) (3.48)

for any γ > 0, t ∈ (0, T ]. Moreover, by employing (3.43) for the problem of (Ṽ γ+1
+ −

Ṽ γ
+ , ϕγ+1 − ϕγ)





L̃(U+, x(t))(Ṽ γ+1
+ − Ṽ γ

+) = (L̃(U+, x(t))(T+)−1)T+(Ṽ γ
+ − Ṽ γ−1

+ )

G̃′
(U+,x′(t))(Ṽ

γ+1
+ − Ṽ γ

+ , ϕ′(t)γ+1 − ϕ′(t)γ) = 0

ϕγ+1 − ϕγ |t=0 = Ṽ γ+1
+ − Ṽ γ

+ |t=0 = 0

(3.49)
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we obtain

|dt(ϕγ+1 − ϕγ)(t)|+ ‖(Ṽ γ+1
+ − Ṽ γ

+)(t)‖ ≤ CM

∫ t

0
‖Ṽ γ

+ − Ṽ γ−1
+ (s)‖ds

which implies

|dt(ϕγ+1 − ϕγ)(t)|+ ‖(Ṽ γ+1
+ − Ṽ γ

+)(t)‖ ≤ (CMt)γ

γ!
‖Ṽ 0

+‖T (3.50)

by induction on γ. From (3.48) and (3.50), and the uniqueness of weak solutions (Ṽ+, dtϕ)
in L∞ for the problem (3.17), which is a simple consequence from the estimate (3.43) in
(3.17) with (f, g, U+,0) = 0, we immediately deduce that the sequences Ṽ γ

+ and ϕγ converge
in C0(ℵ+

T ) and C1[0, T ], the limits Ṽ+ ∈ C0(ℵ+
T ) and ϕ ∈ C1[0, T ] are the unique weak

solutions of the problem (3.17), and they satisfy the estimate

|dtϕ(t)|+ ‖Ṽ+(t)‖ ≤ CeCMt(‖g‖t + ‖Ṽ+,0‖+
∫ t

0
‖f(s) + B(U+(s))‖ds

for any t ∈ (0, T ].

Assertion(2): The righthand side of the iteration equation (3.46) is of the form (3.45).
By applying Lemma 3.6 in (3.46) we conclude that Ṽ γ

+ ∈ C1(ℵ+
T ) and ϕγ ∈ C2[0, T ]. As a

lemma in [5] resembling Lemma 3.5(2) applied to ∇Ṽ γ
+ and d2

t ϕ
γ shows that, the families

{∇Ṽ γ
+ , d2

t ϕ
γ}γ∈IN are equicontinuous. Therefore Ṽ γ

+ → Ṽ+ in C1(ℵ+
T ) and ϕγ → ϕ in

C2[0, T ] as γ →∞. Going back to the problem (3.11), it follows that, the solutions of the
problem (3.11) V+ and ϕ belong to C1(ℵ+

T ) and C2[0, T ] respectively.
To estimate ∇V+ and d2

t ϕ by setting J+ = ∂tV+ and φ = dtϕ and differentiating (3.11)
with respect to t, we obtain that (J+, φ) satisfy the problem





L(U+, x(t))J+ = Q

G′
(U+,x′(t))(J+, φ′) = κ(t)

J+(0, x) = J+,0(x)

(3.51)

where

Q = (∂tf +∇B(U+) · ∂tU+)−∇A(U+)(∂tU+, D · (f + B(U+)− J+))

+x′′(t)D · (f + B(U+)− J+)
(3.52)

with
D = (A(U+)− x′(t)I)−1,

κ(t) = dtg(t)− x′′(t)I · V+ +∇A(U+)(∂tU+, V+)− [∂tU ]φ (3.53)

and

J+,0(x) = f(0, x) + B(U+(0, x))− (A(U+)− x′(t)I)|t=0 · dxU+,0(x). (3.54)

Applying the estimate (3.12) in the problem (3.51), it follows

|dtφ(t)|+ ‖J+(t)‖ ≤ CeCMt(‖κ‖t + ‖J+,0‖+
∫ t

0
‖Q(s)‖ds). (3.55)
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From (3.52), we have

‖Q(s)‖ ≤ C(‖∂tf(s)‖+ M‖f(s)‖+ M‖B(s)‖+ M‖J+‖). (3.56)

Obviously, (3.53) gives rise to

‖κ(t)‖t ≤ ‖dtg‖t + M(‖φ‖t + C‖V+‖t) (3.57)

which implies

‖κ(t)‖t ≤ ‖dtg‖t + CMeCMt(‖g‖t + ‖U+,0‖+
∫ t

0
‖f(s) + B(U+(s))‖ds) (3.58)

by using (3.12). Substituting (3.56) and (3.58) into (3.55), and using Gronwall’s inequality,
we obtain

|dtφ(t)|+ ‖J+(t)‖
≤ C exp(CMteCMt)(‖dtg‖t + ‖f(0, x)‖+ ‖B(U+(0, x))‖+ ‖dxU+,0‖

+M(‖g‖t + ‖U+,0‖) +
∫ t
0(‖∂tf(s)‖+ M‖f(s)‖+ ‖B(U+(s))‖)ds).

(3.59)

The estimate of ∂xV+ can be easily obtained from the equation in (3.11).¶

3.4 Convergence of the sequence of approximate solutions

We construct a sequence of approximate solutions in §3.2, and give the local existence and
priori estimates of solutions to the iteration scheme (3.10). Then, in this subsection, we
introduce Lemma 3.7, therefore, Theorem 2.1 is proved at last.

lemma 3.7: Suppose that we have |dtx−dtx
0|+‖U+−U0

+‖ ≤ η < 1 in problem (3.3),
such that |dtx

γ − dtx
0|+ ‖Uγ

+ − U0
+‖ ≤ η and |d2

t (x
γ − x0)|+ ‖∇(t,x)(U

γ
+ − U0

+)(t)‖ ≤ δ to
the iteration scheme (3.10), while δ + η = ε < 1. There exists T which is relate to δ, but
independent of U+, such that when 0 ≤ t ≤ T . Then we have Uγ

+ → U+ in C1(ℵ+
T ) and

xγ(t) → x(t) in C2[0, T ] as γ →∞.

Proof: Let us state the clue of our proof first. We will prove that Uγ
+ ∈ C1(ℵ+

T ),
and xγ ∈ C2(0, T ], then for the convergence of Uγ

+ → U+ in C0(ℵ+
T ) with xγ(t) → x(t) in

C1[0, T ] as γ →∞. So, we have the result that Uγ
+ → U+ in C1(ℵ+

T ) and xγ(t) → x(t) in
C2[0, T ] as γ →∞. The solutions to problem (3.3) U+ ∈ C1(ℵ+

T ), x(t) ∈ C2[0, T ].
Set

V+ = U+ − U0
+, y = x− x0, V γ

+ = Uγ
+ − U0

+, yγ(t) = xγ(t)− x0(t), (3.60)

it is easy to see that the problem (3.3)and iteration scheme (3.10) can be expressed as




∂tV+ + ∂tU
0
+ + (A(V+ + U0

+)− (y′(t) + dtx
0)I)∂x(U0

+ + V+) = B(U0
+ + V+)

G(V+, y′(t)) = 0, y = 0

y(0) = 0

V+(0, y) = 0

(3.61)

17



with 



∂tV
γ+1
+ + (A(V+ + U0

+)− (y′(t) + dtx
0)I)∂xV γ+1

+ = H(V γ
+)

G′
(V γ

+ ,dtyγ)
(V γ+1

+ , dty
γ+1) = gγ

yγ+1(0) = 0

V γ+1
+ (0, y) = 0

(3.62)

where

H(V γ
+) = B(U0

+ + V γ
+)− ∂tU

0
+ − (A(V γ

+ + U0
+)− (dty

γ(t) + dtx
0)I) · ∂xU0

+,

gγ = −G(V γ
+ , dty

γ) + G′
(V γ

+ ,dtyγ)(V
γ
+ , dty

γ).

Employing (3.12) for problem (3.62), we obtain

|dty
γ+1(t)|+ ‖V γ+1

+ (t)‖ ≤ CeCMt(
∫ t
0 ‖H(V γ

+)(s)‖ds + ‖gγ‖t)

≤ CeCMt(
∫ t
0(C1 + C2(‖Uγ

+(s)‖)‖V γ
+(s)‖)ds + ‖gγ‖t).

(3.63)

As the assumption that |dty
γ(t)| + ‖V γ

+(t)‖ ≤ η < 1, then we would like to see that
|dty

γ+1(t)|+ ‖V γ(t)+1
+ ‖ ≤ η. Obviously, ‖gγ‖ ≤ Cη2, so from (3.63), we have

|dty
γ+1(t)|+ ‖V γ+1

+ (t)‖ ≤ CeCMt(C1t + C2(η)ηt + Cη2).

When T is small enough, we can see that |dty
γ+1(t)|+ ‖V γ+1

+ (t)‖ ≤ η.
By using (3.13), we have

|d2
t y

γ+1|+ ‖∇(t,x)V
γ+1
+ (t)‖

≤ C exp(CMteCMt)(‖dtg
γ‖t + ‖H(V γ

+(0, x))‖+ M‖g‖t +
∫ t
0(‖(∂tH(V γ

+)(s)‖+ M‖H(V γ)(s)‖)ds)

≤ C exp(CMteCMt)(M‖gγ‖1,t + M
∫ t
0 ‖H(V γ)(s)‖1ds)

and as |d2
t y

γ |+ ‖∇(t,x)V
γ
+(t)‖ ≤ δ such that δ + η = ε < 1. Thus, we have the following

|d2
t y

γ+1|+ ‖∇(t,x)V
γ+1
+ (t)‖ ≤ C exp(CMteCMt(MC(ε)ε2 + M(C1t + C2(ε)εt)).

When T is small enough, we obtain |d2
t y

γ+1| + ‖∇(t,x)V
γ+1
+ (t)‖ ≤ δ. So, if K and T are

small enough, we have
‖Uγ

+‖1,ℵ+
T

+ ‖dtx(t)‖1,[0,T ] ≤ K. (3.64)

Hence, we have Uγ
+ ∈ C1(ℵ+

T ) and xγ(t) ∈ C2(0, T ].

From (3.10), we know that (Uγ+1
+ − Uγ

+, xγ+1(t)− xγ(t)) satisfy the problem





L(Uγ
+, xγ(t))(Uγ+1

+ − Uγ
+) = Mγ

G′
(Uγ

+,dtxγ(t))
(Uγ+1

+ − Uγ
+, dtx

γ+1(t)− dtx
γ(t)) = κγ

(Uγ+1
+ − Uγ

+)(0, x) = 0

(xγ+1(0)− xγ(0)) = 0

(3.65)
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where
Mγ = L(Uγ−1

+ , xγ−1(t))Uγ
+ − L(Uγ

+, xγ(t))Uγ
+ + B(Uγ

+)−B(Uγ−1
+ )

and

κγ = G′
(Uγ−1

+ ,dtxγ−1)
(Uγ

+, dtx
γ)−G′

(Uγ−1
+ ,dtxγ−1)

(Uγ−1
+ , dtx

γ−1)−G(Uγ
+, dtx

γ)+G(Uγ−1
+ , dtx

γ−1).

Setting aγ(t) = ‖Uγ+1
+ − Uγ

+‖t + ‖dt(xγ+1(t)− xγ(t))‖t < 1, then we have

‖Mγ(s)‖ ≤ Caγ−1(s). (3.66)

The function G(Uγ
+, dtx

γ) in κγ admits Taylor’s expansion at G(Uγ−1
+ , dtx

γ−1). Thus, we
get

‖κγ‖ ≤ C(aγ−1(t))2, (3.67)

here, we should also use the result proved before that Uγ
+ ∈ C1(ℵ+

T ) and xγ(t) ∈ C2[0, T ].
Then, by using the estimate (3.12) in the problem (3.65), we obtain

aγ(t) ≤ C((aγ−1(t))2 +
∫ t

0
aγ−1(s)ds). (3.68)

If T is small enough, it follows that Uγ
+ → U+ in C0(ℵ+

T ) and xγ(t) → x(t) in C1(0, T ]
as γ → ∞, while U+ ∈ C0(ℵ+

T ), x(t) ∈ C1[0, T ]. As we known form (3.64), Uγ
+ ∈ C1(ℵ+

T )
and xγ(t) ∈ C2(0, T ], Consequently, Uγ

+ → U+ in C1(ℵ+
T ) and xγ(t) → x(t) in C2(0, T ] as

γ →∞, that means the solutions to problem (3.3) U+ ∈ C1(ℵ+
T ), x(t) ∈ C2[0, T ].¶

We get the conclusion of Lemma 3.7 form which we immediately obtain the conclusion
of Theorem 2.1.
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